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Liquid dynamics theory of high-temperature specific heat

Duane C. Wallace
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 15 August 1997!

The potential-energy surface underlying the liquid dynamics Hamiltonian is supposed to consist of a large
number of intersecting, macroscopically similar, nearly harmonic random valleys. The statistical mechanics
replaces each valley with an infinitely extended harmonic potential surface and then corrects for~a! the
anharmonic distortion of the potential surface and~b! the boundary condition that limits the extent of the
potential surface along lines where neighboring valleys intersect. The ion-motional specific heat then consists
of the main quasiharmonic contributionCH53Nk plus the anharmonic correctionCA and the boundary
correctionCB . Here we analyze available specific-heat data for monatomic liquids, at temperaturesT up to
three times the melting temperatureTm , and suggest the following interpretation of the data:~a! CA is about
the same for both the crystal and liquid at the melting point andCA tends toward zero asT increases aboveTm

and~b! CB is a roughly universal function ofT/Tm , running from around zero atT5Tm to around20.6Nk at
T53Tm . The quintessential liquid property, the primary difference between a liquid and a crystal, is that the
liquid ions move through a vast number of random potential valleys and this property is directly responsible for
the boundary specific heatCB . A physically based model forCB agrees with experiment for mercury to high
temperatures.@S1063-651X~98!08602-4#

PACS number~s!: 65.20.1w, 05.70.Ce, 64.10.1h
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I. INTRODUCTION

We have recently presented a theory of liquid dynam
of monatomic liquids@1#. The theory is based on an approx
mate description of that part of the many-particle poten
energy surface that is significant for the statistical mecha
of the liquid state. The potential surface is composed o
large number of intersecting nearly harmonic valleys, e
valley corresponds to a random arrangement of theN ions in
the system, and all random structural valleys have the s
macroscopic average properties in the large-N limit. For mo-
tion within one valley, the system has 3N nearly harmonic
normal modes, giving rise to a total ionic specific heat
approximately 3Nk. The random structural valleys are a
accessible to the liquid state and are supposed to numbewN

for an N-particle system, hence they give the universal c
tribution Nk ln w to the entropy of the liquid relative to th
crystal. Calibration of this constant, from experimental d
@2#, is ln w50.80. Finally, we noted that the many-partic
potential-energy valleys might require some nonzero kin
energy to stabilize them@1#, so that the Hamiltonian is base
on a self-consistent potential, but this will not alter the co
sequent statistical mechanics studied here.

The liquid dynamics theory allows a straightforwa
evaluation of the partition function and the free energy@1#.
Of interest here is the theoretical expression for the entr
of a liquid metal, in classical statistics for the ion motion,

S5Nk$ lnw13@ ln~T/u0!11#%1SAB1SE . ~1!

For a representative random structural valley, the harmo
normal modes of the ion motion have frequenciesvl , l
51, . . . ,3N, and the characteristic temperatureu0 is defined
by

ln ku05^ ln \vl&, ~2!
571063-651X/98/57~2!/1717~6!/$15.00
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where ^ & indicates an average over the normal mode sp
trum @3#. The term in curly brackets in Eq.~1! is the quasi-
harmonic contribution and for elemental liquids it accoun
for nearly all of the entropy. Two small corrections are t
anharmonic entropySA , resulting from anharmonicity of the
many-particle potential valleys, and the boundary contrib
tion SB , resulting from truncation of the potential valleys
the places where two valleys intersect. The sum of th
small terms is denotedSAB in Eq. ~1!,

SA1SB5SAB . ~3!

Finally, the entropy contribution resulting from thermal e
citation of electrons from their ground state, important f
metals, is denotedSE .

For all the normal melting elements for which the nece
sary data can be found~six elements! and to temperatures a
high as the data are available~to T53Tm!, the quasihar-
monic contribution in Eq.~1!, plus the electronic excitation
term, gives an excellent account of the experimental entr
@1#. The remaining theoretical termSAB is of the same mag-
nitude as the combined errors of the entropy analysis. In
present paper, in order to magnify the anharmonic a
boundary contributions to the thermodynamic functions,
study the constant-volume specific heatCV . This is defined
by CV5(]S/] ln T)V and from Eq.~1! it follows that

CV53Nk1CAB1CE . ~4!

Our technique is to evaluateCV from the measured constan
pressure specific heatCP and to calculateCE from theory to
obtain the ion-motional specific heatCI5CV2CE . We then
try to understand the character ofCI through its liquid-
dynamics expression

CI53Nk1CA1CB , ~5!
1717 © 1998 The American Physical Society
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where 3Nk is the quasiharmonic contribution and is the m
jor part ofCI . This analysis and interpretation of experime
tal specific-heat data is carried out in Sec. II.

The anharmonic specific heat expresses that the m
particle potential valleys are not perfectly harmonic, but ha
an anharmonic distortion. In principle,CA can be of either
sign. The boundary contribution expresses that the ma
particle potential valleys do not extend to infinity in all d
rections, but are truncated along lines of intervalley inters
tion ~the boundary!. Hence part of the infinite-valley
potential surface is removed andCB is necessarily negative
A simple model expressing this picture of the boundary
fect is constructed in Sec. III and the model is shown capa
of fitting experimental data. A brief summary of conclusio
is presented in Sec. IV.

For normal melting elements, where crystal and liqu
have approximately the same electronic structure, the m
ing temperature plays the role of a characteristic tempera
and liquid thermodynamic functions are expected to exh
regular behavior when considered as functions ofT/Tm .
However, such behavior cannot be expected for the ano
lous melting elements, where the crystal and liquid have s
stantially different electronic structures@4#. In Si and Ge, for
example, the interionic potential in the metallic liquid bea
no resemblance to that in the covalent diamond crystal
the melting temperature cannot serve as a characteristic
perature@4#. For this reason, our first liquid-dynamics anal
sis was limited to normal melting elements@1#. In the present
specific-heat analysis, the two least anomalous element
and Ga appear to rationalize well and so are included, w
the more strongly anomalous Sb, Bi, Si, and Ge do not
tionalize well and are omitted. These four elements aside,
specific-heat data analyzed here include every classical m
atomic liquid for which sufficient accurate data currently e
ist.

II. ANHARMONIC AND BOUNDARY CONTRIBUTIONS
TO LIQUID SPECIFIC HEAT

To calculateCE reliably, we consider only the nearly free
electron elements, whereCE is quite small and the low-
temperature expansion for independent electrons can be
for crystal and liquid alike. The low-temperature expans
requires the electron density of states at the Fermi energy
this is obtained from band-structure calculations where p
sible@5,6#, corrected for density changes, and otherwise fr
free-electron theory. The expression forCE may be found in
@1#.

We have already observed thatCI'3Nk at the melting
temperatureTm for both crystal and liquid phases@1#. But
the experimental data contain more information than this
cause the departure ofCI from 3Nk is generally larger than
experimental error. The main additional correlation with
the data is shown in Fig. 1, a graph ofCI /Nk for the liquid,
against the same quantity for the crystal. Estimated error
the data in Fig. 1 are60.05 ~except for compressed Ar, se
below!. Since the ion-motional specific heat for a crystal
also given by Eq.~5!, with the boundary termCB omitted,
we have attributed the differenceCI23Nk for the crystal at
melt to anharmonicity@4,7,8# and have been able to verif
this attribution quantitatively for sodium, through comput
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simulations@9#. With this information in mind, the conclu-
sion we draw from Fig. 1 is thatCB'0 for the liquid at melt
and CA is approximately the same for the liquid at melt a
for the crystal at melt.
Figure 1 shows two examples requiring clarification. For A
at 1 bar,CI for the crystal is not unusual, butCI for the
liquid is quite low. We have previously observed that liqui
Ar at 1 bar is noticeably gaslike@4# and that compressed
liquid Ar behaves more like an ordinary liquid@10,11#. Ex-
perimental estimates ofCV at 1 kbar pressure were extracte
from the data of Crawford, Lewis, and Daniels@12# for the
crystal and from the data of Gosman, McCarty, and Hu
@13# for the liquid. The results forCI /Nk have estimated
errors of60.1 and the point plotted in Fig. 1 puts Ar at 1
kbar on the line with the liquid metals. Finally, we plotted
the data point for a hard-sphere system to demonstrate
this system does not provide a realistic approximation for t
motion of ions in a crystal or a liquid.
Considering now the temperature dependence of liquid s
cific heat, it has long been known thatCI decreases as tem-
perature increases at atmospheric pressure@14–16#. Grimvall
@15# graphedCI /Nk vs T/Tm for three metals and we can
now extend that graph to the nine metals shown in Fig.
For these nine metals, the thermodynamic data required
obtainCI at Tm , as well as references providing the exper
mental data at elevated temperatures, are listed in Table
Errors in CI /Nk are expected to be around60.05 atTm ,
increasing to around60.1 at the highest temperature graphe
for each element.
The following qualitative interpretation of Fig. 2 appears rea
sonable at this time. Leaving aside Pb, the metals fall in
two groups:~a! the four alkali metals, havingCA /Nk'0.4
and CB'0 at Tm , and ~b! the remaining four metals for
which bothCA andCB are approximately zero atTm . With
increasing temperature,CA for the alkali metals decreases

FIG. 1. Ion-motional specific heat for the liquid at the meltin
point, against the same quantity for the crystal at the melting poi
The line represents equality of liquid and crystal values.
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FIG. 2. Ion-motional specific heat as a function ofT/Tm .
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and is approximately zero forT*2Tm . CB /Nk is roughly a
universal function, running from 0 atTm to 20.6 at 3Tm .

The curve for Pb falls below the other metals at the hig
temperatures and it does not appear possible to attribute
difference to errors in the analysis. Without further inform
tion, we cannot interpret the special behavior of Pb. T
weakly anomalous Sn and Ga are rather similar to the nor
melting In and Hg. We also note that Fig. 2 shows data a
bar pressure and the decrease inCI with temperature in-
cludes both the explicit temperature dependence, and s
volume dependence as well, through the thermal expan
with increasing temperature.

III. MODEL FOR THE BOUNDARY CONTRIBUTION
TO SPECIFIC HEAT

We will outline evaluation of the liquid-dynamics class
cal partition function, first for harmonic normal modes a
then with a correction for the boundary effect. For a sin
one-dimensional harmonic oscillator, with massM and fre-
quencyv, the partition function is
r
his
-
e
al
1

me
on

e

1

h E
2`

`

exp~2bp2/2M !dpE
2`

`

expS 2
1

2
bMv2q2Ddq

5
kT

\v
, ~6!

whereb51/kT. For the liquid system ofN ions confined to
a single harmonic valley in the potential-energy surface,
normal modes have frequenciesvl , l51, . . . ,3N, and the
corresponding partition function is@3#

Pl~kT/\vl!.

Finally, extending the liquid configuration space to inclu
wN similar valleys and setting the static structural poten
energyF0 for each valley yields the ion-motional partitio
function in the quasiharmonic approximation

ZH5wN exp~2bF0!Pl

kT

\vl
. ~7!

The corresponding Helmholtz free energy is
ata for
s

TABLE I. Data for the high-temperature specific heat analysis. Columns 2–5 are experimental d
the liquid at melt, whereb is thermal expansion coefficient andBS is adiabatic bulk modulus. Reference
provide the experimental data at elevated temperatures.

Element r (g/cm3) b (1024/K) BS ~kbar! CP /Nk CE /Nk Refs.

Na 0.925 2.57 59.4 3.828 0.053 @17–20#
K 0.829 2.9 29.4 3.865 0.080 @17,19–21#
Rb 1.479 3.0 23.5a 3.886 0.089 @17,19,22#
Cs 1.84 3.0 17.2a 3.896 0.136 @17,19,22#
Pb 10.68 1.12 358 3.684 0.089 @23–26#
Ga 6.09 1.20 491a 3.428 0.036 @23,27#
In 7.03 1.11 378 3.549 0.065 @23,28#
Sn 7.00 0.876 442 3.574 0.087 @23,24,26#
Hg 13.69 1.80 299 3.426 0.029 @23,29#

aBS calculated from experimentalBT .



illa

e
o
c

e

de
-

r

a-
to
ison

t
a-
to

an
cant
ion
ant
s

nd-
t,
ly

c-
y.

akes
gle

c-

pri-

1720 57DUANE C. WALLACE
FH5F02NkT ln w23NkT ln~T/u0!, ~8!

whereu0 is given by Eq.~2!.
Suppose now that the one-dimensional harmonic osc

tor, described by Eq.~6!, moves in a well extending only up
to the amplitudea. The partition function is then

1

h E
2`

`

exp~2bp2/2M !dpE
2a

a

expS 2
1

2
bMv2q2Ddq

5
kT

\v
erf b, ~9!

whereb51A 1
2 bMv2a2. Extending this description to th

entire set of normal modes and counting the multiplicity
valleys, the partition function including the boundary effe
is

ZHB5wN exp~2bF0!Pl

kT

\vl
erf bl , ~10!

where

bl51A 1
2 bMvl

2al
2. ~11!

The corresponding free energy isFHB5FH1FB , where the
boundary contribution takes the form

FB52kT(
l

ln~erf bl!. ~12!

Finally, the ion-motional specific heat may be written

CI5CH1CB53Nk1CB , ~13!

where the boundary contribution is

CB52k(
l

Bl~bl
21 1

2 1Bl!, ~14!

Bl5
bl exp~2bl

2!

Ap erf bl

. ~15!

Let us now introduce a simple model for the above d
scription of the boundary effect. Take 0<z<1 and for the
fraction 12z of normal modes let the amplitudeal be infi-
nite, so the boundary contribution vanishes for these mo
For the remaining fractionz, set all the normal mode param
eters the same, i.e., setvl5v and al5a. Then the total
boundary contribution toF @Eq. ~12!# becomes

FB523NkTz ln~erf b!. ~16!

We shall make the temperature dependence explicit by w
ing b, from Eq. ~11!, in the form

b51ATa /T, ~17!

kTa5 1
2 Mv2a2. ~18!

It is then convenient to write the specific heat in the form
-

f
t

-

s.

it-

CI53Nk@12zB~b21 1
2 1B!#, ~19!

where

B5
b2 exp~2b2!

Ap erf b
. ~20!

To compare this model with experiment, we note the p
rametersa and z are expected to depend on volume, so
isolate the explicit temperature dependence, the compar
should be made at constant volume. The correction ofCV
measured at 1 bar toCV at the fixed volume of the liquid a
the melting point follows well-known thermodynamic equ
tions @7#. The references listed in Table I provide the data
make this correction for liquid mercury and mercury is
appropriate example because it appears to have no signifi
anharmonic specific heat. As shown in Fig. 3, the correct
from constant pressure to constant volume is quite signific
in CI vs T for mercury. By choosing the parameter value

z50.56, Ta /Tm56, ~21!

Eq. ~19! provides a rather good fit toCI vs T at fixed volume
for mercury, also as shown in Fig. 3.

We believe that the above physical picture of the bou
ary effect in liquid dynamics is approximately correc
namely, that each many-particle potential valley effective
extends to infinity in some directions, while in other dire
tions it is truncated at the intersection with another valle
The above parameters then suggest that the truncation t
up roughly half the perimeter of each valley and that a sin
normal mode with energy 6kTm and moving in the appropri-
ate direction will carry the system to an intervalley interse
tion.

FIG. 3. Ion-motional specific heat vsT/Tm for mercury, com-
paring experimental data at constant pressure~1 bar!, and at the
constant density of the liquid at the melting point (13.69 g/cm3),
and the model for harmonic plus boundary contributions appro
ate for constant density.
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IV. CONCLUSIONS

At classical temperatures for the ion motion, lattice d
namics theory givesCI53Nk1CA and liquid dynamics
theory givesCI53Nk1CA1CB . We have experimenta
data forCI for both the crystal and liquid at the melting poi
for 15 normal melting metals, plus the weakly anomalous
and Ga, and Ar at 1 kbar pressure. One existing data p
only, namely, that for the strongly anomalous Si@1#, is omit-
ted from consideration here. In view of the theoretical e
pressions and the strong correlation of crystal and liquid d
shown in Fig. 1, the following conclusions appear justifie
up to errors of roughly60.1Nk: ~a! CB'0 for the liquid at
the melting point and~b! CA is approximately the same fo
the crystal and liquid at the melting point.

Experimental data for temperature dependence ofCI exist
for ten liquid metals, of which the anomalous-melting Bi
omitted, and the other nine are graphed in Fig. 2. For so
examples, our conclusions cannot be supposed genera
are restricted to the nine elements considered.~a! For the
alkali metals~Na,K,Rb,Cs!, CA is a roughly universal func-
tion of T/Tm , running from around 0.4Nk at T5Tm to
around zero forT>2Tm . ~b! For a second group of fou
metals~Hg,In,Sn,Ga!, CA'0 at all T. ~c! For both groups,
CB is a roughly universal function ofT/Tm , running from
zero atT/Tm to 20.6Nk at T53Tm . ~d! Pb falls below the
other metals at the higher temperatures for reasons rema
to be learned.

Compared to the harmonic specific heatCH53Nk, the
anharmonic contributionCA is apparently always small, in
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agreement with our predominantly quasiharmonic liqu
dynamics Hamiltonian@1#. The present analysis allows
more detailed conclusion for the case whereCA is actually
significant, namely, for the alkali metals. SinceCA decreases
as T increases, forT.Tm , the anharmonic distortion mus
lie at potential energy per ion small compared tokTm , i.e.,
near the bottom of the many-particle potential-energy vall
Notice that this property is then consistent withCA being
nearly the same in both the crystal and liquid at the melt
point, a strong characteristic of the alkali metals~Fig. 1!.

The essential difference between a crystal and a liqui
that while the ions in a crystal move almost entirely within
single highly ordered many-particle potential valley, the li
uid ions move through a vast number of disordered valle
The essential property of the liquid state, which allows t
intervalley motion, is truncation of the potential surface
the intersection of neighboring valleys. The experimen
boundary specific heatCB reveals this property of the liquid
state. A simple but physically realistic model forCB can be
made to agree with experiment for mercury, toT53.2Tm , at
constant volume~Fig. 3!. The parameters of the fit@Eq. ~21!#
then suggest that the liquid ions move easily from valley
valley. We shall attempt to make this notion quantitative
future research.
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